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Note 

An Eighth-Order Formula for the Numerical Integration of 
the One-Dimensional Schrbdinger Equation 

1. INTRODUCTION 

The  numerical solution of the radial Schrodinger equation has attracted con- 
t inuous interest over many years [l-20]. This equation has been  subject of great 
activity, the aim being to achieve a  fast and  accurate algorithm that generates the 
numerical solution. The  radial Schrodinger equation can be  written 

Y” =&f(r) Y, (1.1) 

where f( r) = W(r) - E and W(r) = 1( I + 1  )/T’ + V(r) is an  effective potential with 1  a  
parameter of the problem and  V(r) -+ 0  as r + co. E is a  real number  denoting the 
energy. The  Schrodinger equation is normally posed in boundary value form, one  
boundary condition being y(O) =0 and  the other boundary condition for large 
values of r determined by physical considerations. 

(1) For positive values of the energy, E, the solution is oscillatory for large 
r with asymptotic form: 

y(r) z C sin(fi r - k/2 + b), 

where 6, the phase shift is to be  determined. 
(2) For negative values of the energy, E, the solution for large values of r is 

a  combination of increasing and  decreasing exponential functions. Imposing the 
boundary condition y(r) -+ 0  as r + cc selects only the decreasing component  
leading to an  eigenvalue problem; i.e., we have to find negative (discrete) values E, 
of E for which a  solution of Eq. (l.l), satisfying the boundary conditions, exists. 

If we are interested in computing accurate values for the eigenvalues and  the 
phase shifts it is necessary in general  to use a  small value for the steplength of 
the integration. Recent work seeks to improve the accuracy by: (1) using higher 
order difference equations (Cash and  Raptis [ 11, Haij et aZ. [lo], Fack and  
Vanden Berghe [ 11, 121, Killingbeck [ 131); (2) looking for other algorithms, 
such as methods based on  an  “eigenvalue function,” methods such as those 
based on  Rayleigh-Schriidinger perturbation theory and  variational Rayleigh-Ritz 
methods (Shore [14], Kobessi [lS], Cohen and  Kais [16], M itra [17]); and  (3) 
constructing exact solutions for (1.1) for specific potentials (Razavy [ 183, 
Varma [19], Wh itehead et al. [20]). 
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So in view of accuracy, in category (1 ), we would expect a high order integration 
method to be more efficient than Numerov’s method since it is generally the case 
that high order methods outperform lower order ones as increasing accuracy is 
requested. However, it is also important, since the solution is “nearly periodic” for 
large r, that the integration method being used should have a non-zero interval of 
periodicity [21]. It is well known that the interval of periodicity of Numerov’s 
method is [0, 61. It is, however, known that high order linear multistep methods 
with step number greater than 2 have a smaller interval of periodicity [21] which 
imposes constraints that can nullify the advantage of high order and lead to results 
which are generally no better than those obtained using the Numerov method. The 
purpose of this paper is to derive an eighth order, two-step method which has a 
larger interval of periodicity than Numerov’s method and the sixth-order formula 
of Cash and Raptis [l] and to give some numerical results comparing these 
methods on three problems of practical interest which have been considered 
previously in the literature. 

2. THE EIGHTH-ORDER METHOD 

We consider the method: 

y,+,-2~,+y,~,=h2CA(y::+*+y::~1)+B(y::+1,2+Y~~1,2) 

+ C(Yi+ I,4 + A- ,,A + ~Y::I + LWhI, (2.1) 

where LTE(h) is the local truncation error. 
To derive an eighth-order formula (i.e., 0(/z”)) we obtain the following linear 

system of equations: 
2.4 +2B+2C+D= 1 

A+L+-=i C 
12 192 3072 360 

B L+- C 1 
360 23040 + 1474560 = 20160’ 

Solving this system we have 

47 A=- 
3780’ 

B=$, 
- 256 C=----- 
945 ’ 

&57 
70 

with 

(2.2) 
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To obtain an eighth-order formula we need sixth-order (i.e., 0(/z’)) approximations 
Y, f 1l2 and Y, + 1l4 for Y, + 1l2 and Y, + 114, respectively. 

Using similar techniques, we can show that the following formulae are sixth- 
order approximations of y, f ,,* and y, + ,,4 : 

.“.+1,2=&25Yn+l +205y,- 15Ynp1-37Yll 2) 

+ & (23~:+, + 761y,; + 509y;_, + 27y;p,) 

I’“el,2=& C37(Y,+, +Y,-,)+WY~+Y~-J 

+g c-9(Yi+, +y::~2)-171(JJ::+y::~,)] (2.3) 

-!- C579Y,+ 1 Yn ~ l/4 = - 4096 -4070~~605~,-,-16W,+1,2-Ye,,,) 

-& C103YZ+1 +1390y,~-113y~~,+19‘t4(j~+,,,+j~-,,,)]. (2.4) 

So, the final integration formula is 

Yn+l-2Yn+YnpI= j&j C47(YE+ 1 +Y:-I)+ ~~WJX+~,~+Y~-~P) 

- 1024m+ 1/4 + j,“- ,,4) + 3078y;] + LTE*(h), (2.5) 

where Y a + Il2 and y,, 1,4 are given by (2.3) and (2.4). The modified truncation error 
is now: 

LTE*(h) = - 9754;;44M) (8854~:” + 1303y;10’) + O(h”). (2.6) 

Note that, in practice, this is a three-step method, since the value y,-, is required 
in calculations (2.3) and (2.4). 
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3. INTERVAL 0~ PERIODICITY 

To determine the interval of periodicity of this method we apply it to the scalar 
test equation y” = - k’y to obtain the difference equation: 

( 1 +$P+ ~~4),;,+,-2(I-~H"+~H4)Y.~ 
15120 

+ 1+&2+ 
( 

13 
-H4 yn-1=0, 15120 > 

where H2 = h2k2. The stability polynomial associated with (3.1) is 

P(l.)=A(H)lti’-2B(H)A+A(H), 

where 

(3.2) 

1 +&H’+- I3 H4 313 
15120 

and I-gH2+- 
15120 

(3.3) 

Letting A = (1 + z)/( 1 - z) and solving the equation P(A) = 0, we obtain 

Z[A(H)+B(H)]z*+2[A(H)-B(H)]=O. (3.4) 

Clearly the roots of (3.4) are purely imaginary if [A(H) + B(H)] . 
[A(H)-B(H)]>O. But A(H)+B(H)>O for all HE(O,~O), while A(H)- 
B(H) z=- 0 for all HE (0,25.2). Thus the interval of periodicity of this method is 
(0, 25.2). To start this method we compute y2 with a special strategy. We compute 
first y3,2 with stepsize h/2 using the sixth-order formula of Cash and Raptis [ 11 and 
then we compute y, using the same steplength and the above method. We give 
some numerical results illustrating the performance of this new method in the next 
section. 

4. NUMERICAL ILLUSTRATION 

In this section we present some numerical results to illustrate the performance of 
our method on the classes of problems described in Section 1. We consider first the 
case of positive energy. 

4.1. Phase Shif Problem 

If we assume that the potential V(r) dies away faster than the term 1(1+ 1 )/r2 
then Eq. (1.1) becomes, for large values of r, 

y”(r) = [l(l+ l)/r2 - k2] y(r). (4.1) 
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This has the linearly independent solutions kr.j,(kr) and kr.n,(kr), wherej,(r) 
and n,(r) are the spherical Bessel and Neumann functions, respectively. We thus 
have, for large r, 

y(r) z Akr.j,(kr) - Bkr.n,(kr) 

z A sin(kr - 1742) - B cos(kr - ITT/~) 

z C sin( kr - 17c/2 + a,), 

where 6, is the real scattering phase shift of the lth partial wave induced by the 
potential V(r). The value of 6, can be computed using the formula: 

tan 61= Cdr,) J(r,~l)-y(r,~l)J(r,)lICy(r,-,) Wr,)- Ar,)Nr,-I)l, (4.2) 

where rn- 1, rn are two distinct step points in the asymptotic region, J(r) = kr. j,(kr) 
and N(r) = kr.n,(kr). Here we follow the usual practice of introducing a term 17c/2 
in the expression for y(r) so that all phase shifts vanish when the potential, V(r), 
vanishes. For the purpose of our numerical comparison we consider the Lennard- 
Jones potential, 

V(r) = M( l/r12 - l/P) (4.3) 

with M= 500 and the problem considered is to compute the phase shift to three 
decimal places. We solve this problem as an initial value one and, in order to be 
able to use the new method, we need two extra initial conditions y, and y, to be 
specified. Since Eq. (1.1) is linear and homogeneous then y, can be chosen 
arbitrarily. For convenience we use y, = h’ + ‘. To compute the other extra condi- 
tion y, we follow the special strategy described in previous section. In Table I we 
list the actuate values of the phase shifts obtained from the perturbative numerical 

TABLE I 

Computed Phase Shifts Using Numerov’s Method, the Cash and Raptis Method [I], 
and Our New Method 

I\k 

Exact values Numerov Cash and Raptis NW 

1 5 10 1 5 10 1 5 10 I 5 10 

0 0.154 -0.484 0.43 1 0.163 a.479 0.419 0.159 -0.484 0.432 0.154 -0.484 0.43 1 
1 1.233 0.928 1.045 1.241 0.939 1.056 1.238 0.927 1.044 1.233 0.928 1.045 
2 -1.430 4.964 ~I.716 -1.419 a.960 xl.704 ml.423 AI.964 XI.716 -1.430 0.964 AI.716 
3 0.783 0.120 0.568 0.790 0.124 0.580 0.788 0.120 0.568 0.783 0.120 0.568 
4 0.126 1.032 ml.387 0.126 1.036 -1.375 0.126 1.032 ml.386 0.126 1.032 -1.387 
5 0.036 -1.379 ~I.299 0.037 ml.376 XI.288 0.037 -1.379 a.299 0.036 -1.379 Al.299 
6 0.015 a.845 0.686 0.015 a.842 0.696 0.015 X1.845 0.686 0.015 a.845 0.686 
7 0.007 a.526 1.566 0.007 a.523 1.566 0.007 X1.525 1.567 0.007 -0.526 1.566 
8 0.003 -0.458 4X806 0.003 a.456 a.797 0.003 AI.458 a.805 0.003 Al.458 a.806 
9 0.002 -0.758 0.153 0.002 a.756 0.145 0.002 -0.758 0.152 0.002 XI.758 0.153 

10 0.001 1.414 0.377 0.001 1.415 0.389 0.001 1.414 0.378 0.001 1.414 0.377 
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method CPM(2) [22] and the phase shifts obtained from the Numerov method, 
the Cash and Raptis method [ 11, and our new method. The energy relates to k = 1, 
5, and 10 with appropriate interval size of 0.08, 0.06, and 0.05, respectively. 

It is clear that the new method gives more reliable results than the other two 
methods, particularly at the higher energies. For low energy and high 1 values, 
where the phase shift is small, there is little to choose between them. 

4.2. Resonance Problem 

We consider the numerical integration of the Schrodinger equation, 

y”(r) = C W(r) - El v(r), 

in the case where the potential V(r) is the Woods-Saxon potential, 

V(r) = uO/( 1 + t) - uot/[a( 1 + t)2] 

TABLE II 

Deviations of the Computed Eigenenergies from the Exact Values, in 10m6 Units, 
for Various Choices of Step Size Shown in the Second Column 

(4.5) 

E, h Numerov Cash/Raptis Ref. [24] New 

53.588872 l/16 228323 108 110 6 
(0.090) (0.095) (0.195) (0.110) 

l/32 14059 
(0.191) (0.24 (0.3852) 

0 
(0.220) 

l/64 870 3 0 0 

163.215341 l/16 6825 
(0.100) (0.19:; (0.11:; 

l/32 476488 208 
(0.191) (0.198) (0.38;; (0.219; 

,164 29378 55 1 0 

341.495874 l/16 114675 103 917 
(0.098) (0.195) (0.110) 

l/32 3354 13 
(0.202) (0.385) (0.22; 

l/@ 435752 438 
(0.362) (0.398) (0.720; (0.4301 

989.701916 l/16 2089 98623 
(0.198) (0.109) 

l/32 117 3044 
(0.390) (0.220) 

l/64 10685 4 44 
(0.400) (0.720) (0.430) 

Note. Units of time required to calculate the final results are given in parentheses below the 
appropriate entry. The empty entries indicate that the corresponding deviations are larger than the 
allowed format of the table. 
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with t = exp[(r - &)/a], u0 = - 50, a = 0.6, and R, = 7.0. We chose 1= 0. In order 
to solve this problem numerically we need to approximate the true (infinite) range 
of integration [0, co) by a finite range. For the purpose of our numerical computa- 
tion we take the domain of integration to be 0 d r < 15. The problem we consider 
is the so-called resonance problem. That is, we wish to find those eigenenergies E, 
of E in the range 1 < Ed 1000 for which the phase shift 6(E,) is equal to 7c/2. 

In our numerical experiments we compute the eigenenergy by splitting up the 
boundary value problem into two separate initial value problems. Having chosen a 
trial eigenenergy, the process is to integrate forwards from the origin using starting 
conditions as described in Section 4.1 and then integrate backwards from r = 15 
using the known asymptotic form y - cos(@ Y) to match up the solution at some 
internal point in the range of integration. The iterative process used to compute a 
correction to the eigenvalue is the one originally proposed by Cooley [23] and 
subsequently improved by Blatt [4]. 

In our numerical example we have computed eigenenergies Ej to six decimal 
places and compared the Numerov method, the method of Cash and Raptis [ 11, 
the exponentially fitted scheme of Ixaru and Rizea [24], and our new method. The 
deviations of the computed values from the exact eigenenergies together with the 
units of time required to calculate the final results are given in Table II. 

Note that the new algorithm is much superior to the Numerov and the Cash- 
Raptis methods, while incurring only a 20% increase in computing cost. The new 
method outperforms the maximally adapted two-step scheme of Ixaru and Rizea 
[24], being comparable to it at low energies for approximately half the cost. At 
higher energy, the exponentially fitted method gives higher accuracy, as expected, 
but still incurs a significant cost penalty. 

4.3. Eigenvalue Problem 

In the case of negative E the problem is an eigenvalue one. We wish to find 
negative (discrete) values Ej of E which are such that the eigenfunction vanishes at 
both ends of the integration range. We use the same technique described in 4.2 
although the asymptotic boundary condition must now be changed to 
y - exp( - ,/% r). 

For the purpose of obtaining our numerical results we consider the integration 
of (1.1) using the Woods-Saxon potential. For this problem we have computed the 
approximations to the eigenvalues E,, j = O(2) 12, using Numerov’s method, the 
Cash and Raptis method [l], a four-step method developed by Ixaru and Rizea 
[25], and our new method. 

In Table III we list the true eigenvalues correct to nine decimal places and the 
absolute errors obtained by the above methods. Note the significant improvements 
achieved by the method presented in this paper, particularly at the higher eigen- 
values. 

Although the formulae presented in this paper may appear complicated, they are 
easy to implement in a compact fashion and the extra computational resource is 
offset by the increased reliability of the results at higher energies. All computations 
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TABLE III 

Deviations of the Computed Eigenvalues from the Exact Values, 
in 10m9 Units for Various Choices of Step Size Shown in the Second Column 

E, h Numerov Cash/Raptis Ref. [25] New 

-49.457788728 l/8 238 12 0 1 
l/16 15 0 0 0 
l/32 1 0 0 0 

-46.290753954 118 39012 85 9 1 
l/l6 2434 0 0 0 
l/32 152 0 0 0 

-41.232607772 118 494856 737 513 0 
l/l6 30803 15 8 0 
l/32 1923 1 0 0 

- 34.672313205 118 2617703 3649 4696 1 
l/l6 162470 34 74 0 
l/32 10137 1 1 0 

-26.873448915 l/8 29911087 10083 21617 87 
l/l6 549709 170 364 0 
l/32 34267 2 6 0 

- 18.094688282 l/8 22817487 15745 69943 615 
l/l6 1405771 236 1364 0 
l/32 87545 3 24 0 

- 8.67608 1670 l/8 47213825 13280 247862 504 
l/l6 549709 321 4298 5 
l/32 34267 4 73 0 

were carried out on a computer Micro-Vax II of the Department of Mathematics 
of the National Technical University of Athens, using double precision arithmetic 
with 16 significant digit accuracy. 
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